UGEB2530 Games and Strategic Thinking

Name: \qquad Student ID: \qquad

1. Consider the 2 -person zero-sum game with game matrix:

$$
A=\left(\begin{array}{cc}
17 & 11 \\
-4 & 20 \\
5 & 17
\end{array}\right)
$$

a) Write down $A^{\prime}=-A^{T}$

$$
A^{\prime}=\left(\begin{array}{ccc}
-17 & 4 & -5 \\
-11 & -20 & -17
\end{array}\right)
$$

b) For each column of A^{\prime}, draw a graph of the payoff of row player of A^{\prime}.

c) Write down the 2×2 reduced game matrix.

$$
\left(\begin{array}{cc}
-17 & -5 \\
-11 & -17
\end{array}\right)
$$

d) Find the maximin strategy, minimax strategy and the value of A^{\prime}.

Maximin strategy: $\mathbf{p}^{\prime}=\left(\frac{1}{3}, \frac{2}{3}\right)$

Minimax strategy: $\mathrm{q}^{\prime}=\left(\frac{2}{3}, 0, \frac{1}{3}\right)$

Value of the game: $v^{\prime}=-13$
e) Solve the game matrix A.

Maximin strategy: $\mathbf{p}=\left(\frac{2}{3}, 0, \frac{1}{3}\right)$

Minimax strategy: $q=\left(\frac{1}{3}, \frac{2}{3}\right)$

Value of the game: $v^{\prime}=13$
2. Consider the following game matrix.

$$
A=\left(\begin{array}{llll}
3 & 5 & 6 & 4 \\
4 & 8 & 7 & 5 \\
6 & 3 & 1 & 2 \\
2 & 1 & 3 & 4
\end{array}\right)
$$

a) Write down the matrix obtained by deleting all dominated strategies.

$$
\left(\begin{array}{lll}
4 & 7 & 5 \\
6 & 1 & 2
\end{array}\right)
$$

b) Draw the graph of the expected payoff of row player for each undominated strategies of column player.
c) Solve the game matrix A.

Maximin strategy of row player: ($0,0.8,0.2,0$)

Minimax strategy of column player: $(0.6,0,0,0.4)$

Value of the game: 4.4

